小李的便利店

悠优酸幽

JAVA线程池原理分析&锁的深度化

线程池

什么是线程池

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序
都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。

第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。

线程池作用

线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。

如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。

线程池的分类

ThreadPoolExecutor

Java是天生就支持并发的语言,支持并发意味着多线程,线程的频繁创建在高并发及大数据量是非常消耗资源的,因为java提供了线程池。在jdk1.5以前的版本中,线程池的使用是及其简陋的,但是在JDK1.5后,有了很大的改善。JDK1.5之后加入了java.util.concurrent包,java.util.concurrent包的加入给予开发人员开发并发程序以及解决并发问题很大的帮助。

corePoolSize: 核心池的大小。 当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中。
maximumPoolSize: 线程池最大线程数,它表示在线程池中最多能创建多少个线程。
keepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。
unit: 参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性。

线程池四种创建方式

Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:

newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

newCachedThreadPool

public class CachedThreadPoolDemo {
    public static void main(String[] args) {
        ExecutorService threadPool = Executors.newCachedThreadPool();
        for (int i = 1; i <= 10; i++) {
            final int temp = i;
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName()+",i:"+ temp);

                }
            });
        }
        threadPool.shutdown();
    }
}

  总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。

newFixedThreadPool

public class FixedThreadPoolDemo {
    public static void main(String[] args) {
        ExecutorService threadPool = Executors.newFixedThreadPool(3);
        for (int i = 1; i < 11; i++) {
            final int temp = i;
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(2000);
                        System.out.println(Thread.currentThread().getId()+",i:"+temp);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }
        threadPool.shutdown();
    }
}

 总结:因为线程池大小为3,每个任务输出id后sleep 2秒,所以每两秒打印3个数字。定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()

newScheduledThreadPool

public class ScheduledThreadPoolDemo {
    public static void main(String[] args) {
        ScheduledExecutorService threadPool = Executors.newScheduledThreadPool(5);
        for (int i = 1; i <= 10; i++) {
            final int temp = i;
            threadPool.schedule(new Runnable() {
                @Override
                public void run() {
                        System.out.println("i:"+temp);
                }
            }, 3, SECONDS);
        }
        threadPool.shutdown();
    }
}
表示延迟3秒执行。

newSingleThreadExecutor

public class SingleThreadExecutorDemo {
    public static void main(String[] args) {
        ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
        for (int i = 1; i <= 10; i++) {
            final int index = i;
            singleThreadExecutor.execute(new Runnable() {
                @Override
                public void run() {
                    System.out.println("index:"+index);
                    try {
                        Thread.sleep(500);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }
        singleThreadExecutor.shutdown();
    }
}

注意: 结果依次输出,相当于顺序执行各个任务。

线程池原理剖析

提交一个任务到线程池中,线程池的处理流程如下:

1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。

2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。

3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

《JAVA线程池原理分析&锁的深度化》

Java锁的深度化

悲观锁、乐观锁、排他锁

悲观锁:悲观锁悲观的认为每一次操作都会造成更新丢失问题,在每次查询时加上排他锁。

乐观锁:乐观锁会乐观的认为每次查询都不会造成更新丢失,利用版本字段控制

重入锁

重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。
在JAVA环境下 ReentrantLock synchronized 都是 可重入锁

读写锁

相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。Java5在java.util.concurrent包中已经包含了读写锁。

CAS无锁机制

(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。

(2)无锁的好处:

第一,在高并发的情况下,它比有锁的程序拥有更好的性能;

第二,它天生就是死锁免疫的。

就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。

(3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量,E表示预期值,N表示新值。仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。

(4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。

(5)简单地说,CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的。如果变量不是你想象的那样,那说明它已经被别人修改过了。你就重新读取,再次尝试修改就好了。

(6)在硬件层面,大部分的现代处理器都已经支持原子化的CAS指令。在JDK 5.0以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以说是无处不在。

《JAVA线程池原理分析&锁的深度化》

自旋锁

自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。

分布式锁

如果想在不同的jvm中保证数据同步,使用分布式锁技术。

有数据库实现、缓存实现、Zookeeper分布式锁

点赞

发表评论

电子邮件地址不会被公开。